Thursday, January 31, 2013

ABC of Health Informatic Free Ebook Pdf

Health informatics (also called Health Information Systemshealth care informatics,healthcare informaticsmedical informaticsnursing informaticsclinical informatics, or biomedical informatics) is a discipline at the intersection of information sciencecomputer science, and health care. It deals with the resources, devices, and methods required to optimize the acquisition, storage, retrieval, and use of information in health and biomedicine. Health informatics tools include not only computers but also clinical guidelines, formal medical terminologies, and information and communication systems. It is applied to the areas of nursingclinical caredentistrypharmacypublic health,occupational therapy, and (bio)medical research.
  • The international standards on the subject are covered by ICS 35.240.80 in which ISO 27799:2008 is one of the core components.
  • Molecular bioinformatics and clinical informatics have converged into the field of translational bioinformatics.
World wide use of computer technology in medicine began in the early 1950s with the rise of the computers.[3] In 1949, Gustav Wagner established the first professional organization for informatics in Germany.[4] The prehistory, history, and future of medical information and health information technology are discussed in reference.[5] Specialized university departments and Informatics training programs began during the 1960s in France, Germany, Belgium and The Netherlands. Medical informatics research units began to appear during the 1970s in Poland and in the U.S.[4] Since then the development of high-quality health informatics research, education and infrastructure has been a goal of the U.S. and the European Union.[4]
Early names for health informatics included medical computing, biomedical computing, medical computer science, computer medicine, medical electronic data processing, medical automatic data processing, medical information processing, medical information science,medical software engineering, and medical computer technology.[citation needed]
The health informatics community is still growing, it is by no means a mature profession, but work in the UK by the voluntary registration body, the UK Council of Health Informatics Professions has suggested eight key constituencies within the domain - information management, knowledge management, portfolio/programme/project management, ICT, education and research, clinical informatics, health records(service and business-related), health informatics service management. These constituencies accommodate professionals in and for the NHS, in academia and commercial service and solution providers.
Since the 1970s the most prominent international coordinating body has been the International Medical Informatics Association(IMIA).[6]
Even though the idea of using computers in medicine emerged as technology advanced in the early 20th century, it was not until the 1950s that informatics began to make a significant impact in the United States.[3]
The earliest use of electronic digital computers for medicine was for dental projects in the 1950s at the United States National Bureau of Standards by Robert Ledley.[7] During the mid-1950s, the United States Air Force (USAF) carried out several medical projects on its computers while also encouraging civilian agencies such as the National Academy of Sciences - National Research Council (NAS-NRC) and the National Institutes of Health (NIH) to sponsor such work.[8] In 1959, Ledley and Lee B. Lusted published “Reasoning Foundations of Medical Diagnosis,” a widely-read article in Science, which introduced computing (especially operations research) techniques to medical workers. Ledley and Lusted’s article has remained influential for decades, especially within the field of medical decision making.[9]
Guided by Ledley's late 1950s survey of computer use in biology and medicine (carried out for the NAS-NRC), and by his and Lusted's articles, the NIH undertook the first major effort to introduce computers to biology and medicine. This effort, carried out initially by the NIH's Advisory Committee on Computers in Research (ACCR), chaired by Lusted, spent over $40 million between 1960 and 1964 in order to establish dozens of large and small biomedical research centers in the US.[8]
One early (1960, non-ACCR) use of computers was to help quantify normal human movement, as a precursor to scientifically measuring deviations from normal, and design of prostheses.[10] The use of computers (IBM 650, 1620, and 7040) allowed analysis of a large sample size, and of more measurements and subgroups than had been previously practical with mechanical calculators, thus allowing an objective understanding of how human locomotion varies by age and body characteristics. A study co-author was Dean of the Marquette University College of Engineering; this work led to discrete Biomedical Engineering departments there and elsewhere.
The next steps, in the mid-1960s, were the development (sponsored largely by the NIH) of expert systems such as MYCIN andInternist-I. In 1965, the National Library of Medicine started to use MEDLINE and MEDLARS. Around this time, Neil Pappalardo, Curtis Marble, and Robert Greenes developed MUMPS (Massachusetts General Hospital Utility Multi-Programming System) in Octo Barnett's Laboratory of Computer Science [11] at Massachusetts General Hospital in Boston, another center of biomedical computing that received significant support from the NIH.[12] In the 1970s and 1980s it was the most commonly used programming language for clinical applications. The MUMPS operating system was used to support MUMPS language specifications. As of 2004, a descendent of this system is being used in the United States Veterans Affairs hospital system. The VA has the largest enterprise-wide health information system that includes an electronic medical record, known as the Veterans Health Information Systems and Technology Architecture (VistA). A graphical user interface known as the Computerized Patient Record System (CPRS) allows health care providers to review and update a patient’s electronic medical record at any of the VA's over 1,000 health care facilities.
During the 1960s, Morris Collen, a physician working for Kaiser Permanente's Division of Research, developed computerized systems to automate many aspects of multiphasic health checkups. These system became the basis the larger medical databases Kaiser Permanente developed during the 1970s and 1980s.[13] The American College of Medical Informatics (ACMI) has since 1993 annually bestowed the Morris F. Collen, MD Medal for Outstanding Contributions to the Field of Medical Informatics.[14]
In the 1970s a growing number of commercial vendors began to market practice management and electronic medical records systems. Although many products exist, only a small number of health practitioners use fully featured electronic health care records systems.
Homer R. Warner, one of the fathers of medical informatics,[15] founded the Department of Medical Informatics at the University of Utahin 1968. The American Medical Informatics Association (AMIA) has an award named after him on application of informatics to medicine.
Like other IT training specialties, there are Informatics certifications available to help informatics professionals stand out and be recognized. In Radiology Informatics, the CIIP (Certified Imaging Informatics Professional) certification was created by ABII (The American Board of Imaging Informatics) which is sponsored by SIIM (the Society for Imaging Informatics in Medicine) in 2005. The CIIP certification requires documented experience working in Imaging Informatics, formal testing and is a limited time credential requiring renewal every five years. The exam tests for a combination of IT technical knowledge, clinical understanding, and project management experience thought to represent the typical workload of a PACS administrator or other radiology IT clinical support role. Certifications from PARCA (PACS Administrators Registry and Certifications Association) are also recognized. The five PARCA certifications are tiered from entry level to architect level. (wikipedia)


Tuesday, January 29, 2013

ABC Patient Safety Free EBOOK PDF

Patient safety is a new healthcare discipline that emphasizes the reporting, analysis, and prevention of medical error that often leads to adverse healthcare events. The frequency and magnitude of avoidable adverse patient events was not well known until the 1990s, when multiple countries reported staggering numbers of patients harmed and killed by medical errors. Recognizing that healthcare errors impact 1 in every 10 patients around the world, the World Health Organization calls patient safety an endemic concern.Indeed, patient safety has emerged as a distinct healthcare discipline supported by an immature yet developing scientific framework. There is a significant transdisciplinary body of theoretical and research literature that informs the science of patient safety.The resulting patient safety knowledge continually informs improvement efforts such as: applying lessons learned from business and industry, adopting innovative technologies, educating providers and consumers, enhancing error reporting systems, and developing new economic incentives. Millennia ago, Hippocrates recognized the potential for injuries that arise from the well intentioned actions of healers. Greek healers in the 4th Century B.C., drafted the Hippocratic Oath and pledged to "prescribe regimens for the good of my patients according to my ability and my judgment and never do harm to anyone."Since then, the directive primum non nocere (“first do no harm) has become a central tenet for contemporary medicine. However, despite an increasing emphasis on the scientific basis of medical practice in Europe and the United States in the late 19th Century, data on adverse outcomes were hard to come by and the various studies commissioned collected mostly anecdotal events. In the United States, the public and the medical specialty of anesthesia were shocked in April 1982 by the ABC television program 20/20 entitled The Deep Sleep. Presenting accounts of anesthetic accidents, the producers stated that, every year, 6,000 Americans die or suffer brain damage related to these mishaps.In 1983, the British Royal Society of Medicine and the Harvard Medical School jointly sponsored a symposium on anesthesia deaths and injuries, resulting in an agreement to share statistics and to conduct studies.By 1984 the American Society of Anesthesiologists (ASA) had established the Anesthesia Patient Safety Foundation (APSF). The APSF marked the first use of the term "patient safety" in the name of professional reviewing organization.Although anesthesiologists comprise only about 5% of physicians in the United States, anesthesiology became the leading medical specialty addressing issues of patient safety.Likewise in Australia, the Australian Patient Safety Foundation was founded in 1989 for anesthesia error monitoring. Both organizations were soon expanded as the magnitude of the medical error crisis became known. (wikipedia)

Monday, January 21, 2013


Antenatal care has evolved from a philanthropic service for mothers and their unborn babies to a multiphasic screening programme. Much has been added in the past few years but a lack of scientific scrutiny has meant that little has been taken away. Healthy mothers and fetuses need little high technological care but some screening is desirable to allocate them with confidence to the healthy group of pregnant women. Women and fetuses at high risk need all the scientific help available to ensure the safest environment for delivery and aftercare. The detection and successful management of women and fetuses at high risk is the science
of antenatal care; the care of other mothers at lower risk is the art of the subject and probably can proceed without much technology.

Midwives are practitioners of normal obstetrics and are taking over much of the care of normal or low-risk pregnancies, backed up by general practitioner obstetricians in the community and by consultant led obstetric teams in hospitals. This book has evolved from over 40 years of practice, reading, and research. We have tried to unwind the tangled skeins of aetiology and cause and the rational from traditional management, but naturally what remains is an opinion. To broaden this, the authorship has been widened; Dr Margery Morgan, a consultant obstetrician and gynaecologist at Singleton Hospital, has joined Professor Chamberlain as a co-author, bringing with her the new skills used in antenatal care.


Tuesday, January 15, 2013

Wound Care Essentials Practice Principles Third Edition EBOOK PDF

This is an exciting and challenging time for wound care clinicians as a new understanding of the biology of  healing wounds has given rise to many new wound care treatments and therapies. Although we are gaining new knowledge as to the biology of wound healing, “we can no longer care only for the wound itself; we must step back and look at the entire human being who happens to have a wound that needs healing.

”1 Being able to differentiate among the various treatment options, when and how to apply them, in what combinations, and when to change them has indeed become both an art and a science. “With the emergence of more complex products, we will be increasingly required to use these products ppropriately to maximize their impact. As a better understanding of the wound environment becomes available, our ability to tailor our approach and better treat the patient as a whole increases.”

Providing quality care for your wound patients starts with an analysis of the patient’s individualized wound assessment and continues with developing a plan of care, selecting the proper product, and reevaluating the plan of care as appropriate. Wound dressings can present a challenging decision for clinicians. Moist wound healing, moisture-balanced dressings, and certainly the principles of optimal wound interventions are key concepts needed to support the healing process. As clinicians try to heal wounds faster, the marketplace continues to provide many more treatment choices.

Currently there are reported to be more than 500 different types of dressings available to manage patients with wounds.3 Keeping abreast of wound dressing choices and various application techniques, as well as which product to use and when, is an ambitious task for all clinicians Wound healing in the 21st century has certainly changed. There have been more advances in wound care over the past four decades than during the previous 2,000 years.